Galois Representations with Prescribed Restriction to Inertia

Jared Weinstein, UC Berkeley

Red Lodge, 6 April 2006

Basic question:

Let F be a totally real number field. For each prime \mathfrak{p} of F, let $I_{\mathfrak{p}} \subset \operatorname{Gal}(\overline{F}_{\mathfrak{p}}/F_{\mathfrak{p}})$ be the inertia group. Given a family of continuous complex representations $\rho_{\mathfrak{p}} \colon I_{\mathfrak{p}} \to \operatorname{GL}_2(\mathbb{C})$, when does there exist a geometric object (*e.g.*, a GL₂abelian variety over F) whose associated Galois representation restricts to each $I_{\mathfrak{p}}$ as $\rho_{\mathfrak{p}}$?

Contents:

- 1. Review of Weil-Deligne representations
- 2. An "inertial" Langlands Correspondence
- 3. The Equivariant Riemann-Roch formula

Notation, Weil-Deligne Representations

Let K be a p-adic field, with residue field \mathbf{F}_q , and let $G_K = \operatorname{Gal}(\overline{K}/K)$. The Weil group W_K fits into the diagram



Local class field theory furnishes an isomorphism Art : $K^* \rightarrow W_K^{ab}$, which sends a uniformizer in \mathcal{O}_K to a geometric Frobenius element Φ . We define an absolute value || on W_K^* by $|\sigma| = |\operatorname{Art}^{-1}(\sigma)|_K$.

A Weil-Deligne representation of K is a pair (ρ, N) , where

 $\rho \colon W_K \to \mathsf{GL}_n(\mathbf{C})$

is semisimple and continuous and $\mathsf{N}\in\mathsf{End}\,\mathbf{C}^n$ satisfies

$$\rho(\sigma) \operatorname{N} \rho(\sigma)^{-1} = |\sigma| \operatorname{N}, \ \sigma \in W_K$$

(N is the "monodromy operator"; it is necessarily nilpotent.) In the wild, we normally encounter *l*-adic Galois representations. The formalism of the Weil-Deligne representation allows us to pass between the *l*-adic and complex worlds, at least when $l \neq p$:

Theorem. (Grothendieck) For $l \neq p$, there exists a bijection

 $\left\{ \begin{array}{l} \mathsf{WD reps} \ (\rho,\mathsf{N}) \\ \mathsf{of dimension} \ n \end{array} \right\} \xrightarrow{\sim} \left\{ \begin{array}{l} \mathsf{continuous reps} \\ \rho_l \colon W_K \to \mathsf{GL}_n(\overline{\mathbf{Q}}_l) \end{array} \right\}$

Here one makes use of an isomorphism $\iota \colon \mathbf{C} \xrightarrow{\sim} \overline{\mathbf{Q}}_l$, whence (ρ, N) and ρ_l are related by

$$\rho_l(\sigma) = \iota(\rho(\sigma)) \exp(t_l(\sigma)\iota(\mathsf{N})),$$

for σ in an open subgroup of I_K . Here $t_l \colon I_K \to \mathbf{Q}_l$ is an *l*-adic tame character.

(Thus N measures how far away ρ_l is from being semisimple. Sometimes we refer to the pair (ρ, N) as simply ρ .) Now let A/\mathbf{Q} be an abelian variety of GL_2 -type. This means there is a number field E with $[E : \mathbf{Q}] = \dim A$ and an action $E \hookrightarrow \operatorname{End}_{\mathbf{Q}} A \otimes_{\mathbf{Z}} \mathbf{Q}$. Then for each prime $\lambda | l$ in E, the action of Galois on the λ -adic Tate module

$$T_{\lambda}A := \lim_{\infty \leftarrow n} A[\lambda^n]$$

gives a representation

$$\begin{array}{rcl} \rho_{A,\lambda} \colon \operatorname{Gal}(\overline{\mathbf{Q}}/\mathbf{Q}) \to \operatorname{Aut}_{E_{\lambda}} T_{\lambda}A &\approx & \operatorname{GL}_{2}(E_{\lambda}) \\ & \hookrightarrow & \operatorname{GL}_{2}(\overline{\mathbf{Q}}_{l}) \end{array}$$

Previous theorem yields a family of Weil-Deligne representations

$$\rho_{A,p} \colon W_{\mathbf{Q}_p} \to \mathsf{GL}_2(\mathbf{C})$$

for each prime p. The restrictions to inertia

$$\rho_{A,p}|_{I_{\mathbf{Q}p}} \colon I_{\mathbf{Q}p} \to \mathsf{GL}_2(\mathbf{C})$$

are trivial at all but finitely many primes. The $\left\{\rho_{A,p}\right\}$ might be called the "bad reduction type" of A.

Example: Elliptic Curves

If A = E is an elliptic curve and p > 2, there are three possibilities for the restriction of the WD representation ($\rho_{A,p}$, N) to $I_{\mathbf{Q}_p}$.

• E has good reduction at p. Then $\rho_{E,p} = 1 \oplus 1$ and N = 0.

• *E* has multiplicative reduction at *p*. Then $\rho_{E,p} = 1 \oplus 1$ and $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$.

• E has additive reduction at p. Then either:

• *E* is a twist of a curve of multiplicative reduction by a ramified quadratic character χ , so that $\rho_{E,p} = \chi \oplus \chi$ and $N = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$, or

• E is not such a twist: then there is a quadratic extension L/\mathbf{Q}_p , and a character $\theta \colon W_L \to \mathbf{C}^*$, for which $\rho_{E,p}$ is the restriction to $I_{\mathbf{Q}_p}$ of $\mathrm{Ind}_{W_L}^{W_K} \theta$. (N = 0.)

We ask: Suppose we have a family of inertial representations

$$\rho_p \colon I_{\mathbf{Q}_p} \to \mathsf{GL}_2(\mathbf{C})$$

such that

- 1. Each ρ_p admits an extension to a Weil-Deligne representation of K,
- 2. All but finitely many ρ_p are trivial,
- 3. $\prod_p \det \rho_p(\operatorname{Art}(-1)) = 1.$

Then does there exist an abelian variety A/\mathbf{Q} of GL_2 type for which $\rho_{A,p}|_{I_p} \approx \rho_p$?

We ask: Suppose we have a family of inertial representations

$$\rho_p \colon I_{\mathbf{Q}_p} \to \mathsf{GL}_2(\mathbf{C})$$

such that

- 1. Each ρ_p admits an extension to a Weil-Deligne representation of K,
- 2. All but finitely many ρ_p are trivial,
- 3. $\prod_p \det \rho_p(\operatorname{Art}(-1)) = 1.$

Then does there exist an abelian variety A/\mathbf{Q} of GL_2 type for which $\rho_{A,p}|_{I_p} \approx \rho_p$?

Theorem. Such an A exists for all but finitely many families $\{\rho_p\}$ and their twists.

In fact, one can give a formula for the number of *modular* abelian varieties A which match $\{\rho_p\}$ this way. (It is conjectured that all abelian varieties of GL_2 type are modular.)

The Langlands Correspondence for $GL_n(K)$

Let $Irr(GL_n(K))$ denote the set of isomorphism classes of smooth admissible irreducible complex representations of $GL_n(K)$.

Ex. For n = 1, an irreducible representation of $GL_1(K) = K^*$ is just a homomorphism $K^* \rightarrow C^*$. But we have the isomorphism $Art : K^* \rightarrow W_K^{ab}$, so $Irr(GL_1(K))$ is identified with one-dimensional WD representations of K.

The generalization of this to $n \ge 1$ is embodied in the

Theorem. There is a bijection

rec : {n-dim'l WD reps of K} \rightarrow Irr(GL $_n(K)$) which extends class field theory in dimension 1.

Theorem. There is a bijection

rec : {*n*-dim'l WD reps of K} $\xrightarrow{\sim}$ Irr(GL_{*n*}(*K*)) which extends class field theory in dimension 1.

For n = 1, this is local class field theory, established by Hasse (1930).

The existence of rec as above was conjectured by Langlands (1970).

For n = 2, the theorem was established by Kutzko (1980).

Proofs for all n were given by Harris/Taylor (1998) (local methods) and Henniart (2000) (global methods).

The Category of Inertial WD representations Let K once again be a local field. An *inertial WD representation* of K is a pair (ρ, N) consisting of a continuous rep. $\rho: I_K \to GL_n(\mathbb{C})$ and an endomorphism $N \in End \mathbb{C}^n$ such that ρ admits an extension to $\tilde{\rho}: W_K \to GL_n(\mathbb{C})$ which makes $(\tilde{\rho}, N)$ a WD representation.

Ex. For n = 1, a WD rep. of W_K is a map $K^* \to \mathbb{C}^*$ (class field theory). The image of I_K in $W_K^{ab} \to K^*$ is \mathcal{O}_K^* , so an inertial WD representation of K is simply a homomorphism $\operatorname{GL}_1(\mathcal{O}_K) \to \operatorname{GL}_1(\mathbb{C}).$

The generalization of this to higher dimension should put into correspondence inertial WD representations and certain irreducible representations of $GL_n(\mathcal{O}_K)$.

An inertial Langlands Correspondence?

Let $Irr(GL_n(\mathcal{O}_K))$ denote the set of isomorphism classes of irreducible representations of $GL_n(K)$ which are *smooth*, *i.e.* which factor through $GL_n(\mathcal{O}_K/\mathfrak{p}^N)$ for some N.

Conjecture: There is a diagram

$$\{ \text{WD reps of } K \}^{\stackrel{\text{rec}}{\sim}} \operatorname{Irr}(\operatorname{GL}_n(K))$$
$$\downarrow$$
$$\{ \text{IWD reps of } K \}^{\sim} \operatorname{Irr}(\operatorname{GL}_n(\mathcal{O}_K))$$

Theorem Conj. is true for n = 2.

Proof relies on explicit classification of elements of $Irr(GL_2(K))$ and is not very enlightening.

Need to describe map

rec :
$$\operatorname{Irr}(\operatorname{GL}_2(K)) \to \operatorname{Irr}(\operatorname{GL}_2(\mathcal{O}_K)).$$

Let Π : $\operatorname{GL}_2(K) \to \operatorname{Aut} V$ be an element of $\operatorname{Irr}(\operatorname{GL}_2(\mathcal{O}_K))$. Then there is a unique (up to scalar) *new vector* $v \in V$, fixed by the largest subgroup of the form

$$\Gamma_1(\mathfrak{p}_K^n) := \left\{ \gamma \equiv \begin{pmatrix} 1 & * \\ 0 & 1 \end{pmatrix} \ (\mathfrak{p}_K^n) \right\} \subset \mathrm{GL}_2(\mathcal{O}_K).$$

Let π be the $GL_2(\mathcal{O}_K)$ -span of v.

Then π is the image of Π in our map. Note that π is necessarily finite dimensional.

Back to the original problem. Let $\{\rho_p\}$ be a collection of inertial WD representations of \mathbf{Q}_p for each prime p, almost all of which are trivial. Then by "inertial Langlands correspondence" get family of finite-dimensional representations

$$\pi_p := \operatorname{rec}(\rho_p) : \operatorname{GL}_2(\mathbf{Z}_p) \to \operatorname{Aut} V_p.$$

Tensor these together to form

$$\pi := \otimes_p \pi_p : \operatorname{GL}_2(\widehat{\mathbf{Z}}) \to \operatorname{Aut} V,$$

which is once again finite dimensional.

The condition $\prod_p \det \rho_p(\operatorname{Art}(-1)) = 1$ means that the action of $\operatorname{GL}_2(\widehat{\mathbf{Z}})$ factors through $G := \operatorname{GL}_2(\widehat{\mathbf{Z}})/\{\pm 1\}$.

We are on the hunt for a abelian variety A of GL_2 type whose "bad reduction type" is $\{\rho_p\}$. A supply of GL_2 abelian varieties is given by cuspidal eigenforms

$$f \in S_2(X(\infty), \mathbf{C}) \bigcirc \operatorname{GL}_2(\widehat{\mathbf{Z}}) / \{\pm 1\}$$

Each such f yields an abelian variety quotient A_f of J(N) (Shimura). How to read off the bad reduction type of A_f from f?

Claim. Let f be a weight 2 cuspidal eigenform. The bad reduction type of A_f is $\{\rho_p\}$ iff the $GL_2(\hat{\mathbf{Z}})$ -span of f is \cong to $\pi = \otimes_p \operatorname{rec}(\rho_p)$.

Explanation. The automorphic form attached to f is a square-integrable function

$$\phi_f \colon \operatorname{GL}_2(\mathbf{Q}) \setminus \operatorname{GL}_2(\mathbb{A}_{\mathbf{Q}}) \to \mathbf{C}.$$

The automorphic representation Π_f associated to f is the $GL_2(\mathbb{A}_Q)$ -span of ϕ_f . Then

$$\Box_f = \otimes_p \Box_{f,p}$$

and we have

$$\operatorname{rec}(\rho_{A,p}) \cong \Pi_{f,p}.$$

If f starts out life as a newform, then $\phi_f|_{GL_2(\mathbf{Q}_p)}$ is a new vector for $\Pi_{f,p}$. Let π_f be the $GL_2(\widehat{\mathbf{Z}})$ span of ϕ , with $\phi_f = \otimes_p \pi_{f,p}$. Then by commutativity of the "reciprocity diagram" get

$$\operatorname{rec}(\rho_{A,p}|_{I_{\mathbf{Q}_p}}) \cong \pi_{f,p}.$$

as required.

So, we are trying to count how many times $\pi = \bigotimes_p \operatorname{rec}(\rho_p)$ appears as a $\operatorname{GL}_2(\widehat{\mathbf{Z}})$ -module inside of $S_2(X(\infty), \mathbf{C})$.

The Equivariant Riemann-Roch Formula

Context: Let X be a smooth projective (pro-) curve over an algebraically closed field k admitting a faithful action by a (pro-)finite group G, with quotient Y. Let \mathcal{L} be a G-equivariant invertible sheaf on X, meaning that for each $g \in G$, there is an isomorphism $\phi_g \colon g_*\mathcal{L} \to \mathcal{L}$ satisfying an appropriate cocycle condition. (Such bundles can be identified with classes of Ginvariant divisors on X.)

Then G acts on the cohomology groups $H^i(X, \mathcal{L})$ (i = 0, 1). Can define the Euler characteristic

$$\chi(\mathcal{L}) = [H^0(X, \mathcal{L})] - [H^1(X, \mathcal{L})]$$

in the ring $R_k(G)$ of virtual representations of G over k.

Can also define the "equivariant degree" $\deg_{eq} \mathcal{L} \in R_k(G)$, a virtual representation whose dimension is deg \mathcal{L} .

Theorem (Borne, 2003) The equality

$$\chi(\mathcal{L}) = \chi(\mathcal{O}_X) + \deg_{\mathsf{eq}} \mathcal{L}$$

holds in $R_k(G)$.

Further, suppose the quotient map $X \to Y$ is ramified over the set Y_{ram} . Then

deg_{eq} $\Omega_X = (2g_Y - 2 + \#Y_{ram}) [k[G]] - [X_{ram}],$ where X_{ram} is the permutation representation on the ramified points of X in $X \to Y$.

We apply the theorem to the data

$$egin{aligned} X(\infty) \ & \downarrow G := \operatorname{GL}_2(\widehat{\mathbf{Z}}) / \pm 1 \ & X(1) \end{aligned}$$

This map is ramified over the points 1728, 0, and ∞ , with inertia groups $\left\langle \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \right\rangle$, $\left\langle \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix} \right\rangle$, and $\begin{pmatrix} 1 & \hat{Z} \\ 0 & 1 \end{pmatrix}$, respectively. We are interested in the canonical bundle $\Omega_{X(\infty)}$ because

$$H^0(X(\infty), \Omega_{X(\infty)}) = S_2(X(\infty), \mathbf{C}).$$

The Riemann-Roch theorem gives

$$2\left(\left[S_2(X(\infty))\right] - \left[H^0(\mathcal{O}_{X(\infty)})\right]\right) = \deg \Omega_{X(\infty)}$$

Meanwhile, a little calculation yields

$$\deg \Omega_{X(\infty)} = \mathbf{C}[G] - \mathbf{C}[G/G_0] - \mathbf{C}[G/G_{1728}] - \mathbf{C}[G/G_\infty],$$

where G_0 is the stabilizer of a point in $X(\infty)$ above 0, etc.

Conclusion: If $\rho = \{\rho_p\}$ is a collection of inertial WD representations which are almost all trivial and which satisfy $\prod_p \det \rho_p(\operatorname{rec}(-1)) = 1$, then

$\left\{ \begin{array}{l} \text{Modular AVs with} \\ \text{bad reduction type } \left\{ \rho_p \right\} \right\} = \frac{1}{12} \dim V_{\rho} + o(1),$ where $V_{\rho} = \bigotimes_p \operatorname{rec}(\rho_p)$. (The o(1) is as dim $V_{\rho} \rightarrow \infty$; up to twisting there are only finitely many ρ with bounded dim V_{ρ} .)